Boost Your Productivity!Translate documents (Ms-Word, Ms-Excel, ...) faster and better thanks to artificial intelligence!
Opmerking: sommige video’s zijn vertaald door freelancers die niet altijd professionele vertalers zijn; vertaalfouten zijn bijgevolg niet uit te sluiten. Deze teksten kunnen echter van pas komen, bijvoorbeeld om spreektalige uitdrukkingen te vinden.
U kunt deze boeiende video's ook direct bekijken met de ondertiteling in een taal naar keuze!
Vertaling van "vous relâchez un électron " (Frans → Nederlands) :
Par exemple, si vous relâchez un électron, il va voyager comme une onde dans la pièce, mais quand il frappe le mur, il le fait à un seul endroit - vous avez commencé avec un électron, après tout !
Bijvoorbeeld, als je een elektron los laat zal die als een golf door de kamer gaan, maar zodra die de muur raakt, raakt hij maar op een enkele plaats - je begon tenslotte met een enkel elektron!
Et vous la relâchez, et ensuite quand vous en voyez la queue vous l'attrapez par la queue, et vous la ramenez.
Je laat het gaan, en als je de staart ziet, pak je het bij de staart en leidt het weer naar binnen.
Et vous savez quoi ? Plus fou encore. Regardons maintenant à l'intérieur de chaque atome - et donc de la myrtille -- Qu'y voyez-vous ? Au centre de l'atome, il y a quelque chose appelé le noyau, qui contient des protons et neutrons, et à l'extérie
ur vous verriez des électrons. Alors quelle est la taille du noyau ? Et bien, si les atomes sont comme des myrtilles, quelle serait la taille du noyau ? Vous vous souvenez peut-être d'illustrations de vos cours de sciences, où vous voyiez un petit point s
ur la page avec une flèche pointant vers le no ...[+++]yau. Et bien, ces images ne sont pas dessinées à l'échelle, elles sont erronées. Alors quelle est la taille du noyau ?
En weet je wat? Het wordt nog gekker. Laten we nu eens de binnenkant van elk atoom bekijken -- van de bosbes dus. -- Wat zie je daar? In het midden van het atoom zit de kern met protonen en neutronen, en aan de buitenkant zou je elektronen zien. Dus hoe groot is dan de kern? Als atomen als bosbessen in de aarde zijn, hoe groot zou de kern dan zijn? Op oude foto's van het atoom uit de wetenschapsles. zag je een stip met een pijl wijzend naar de kern. Die foto's zijn helemaal niet op schaal getekend. Eigenlijk zijn ze helemaal fout. Hoe groot is de kern dan?
Si vous relâchez un moustique mâle, et qu'il y a une femelle dans les environs, le mâle la trouvera.
Laat een mannelijke mug los en gegarandeerd vindt hij het wijfje als er een in de buurt is.
Les radiations sont effrayantes. En tout cas, certains types les sont. Mon compteur Geiger ne détecte rien près de mon téléphone, de mon routeur wi-fi ou mon four à micro-ondes. Car un compteur Geiger ne mesure que les radiations ionisantes - C.à.d. des radiations avec assez d'énergi
e pour arracher les électrons des atomes. Ça se mesure en unités appelées sieverts. Si vous êtes exposés à plus de 2 sieverts en une fois, vous serez certainement mort peu après ça. Mais nous sommes exposés de faibles niveaux de rayonnement ionisant tout le temps. Les bananes, par ex, sont riches en potassium et une partie de ce potassium est naturellement ra
...[+++]dioactif. Donc quand vous mangez une banane vous êtes exposés à environ 0,1 microsievert de radiation. C'est 1 sur 10 millions de sievert. Utilisons donc une banane pour mesurer les doses de radiation. Puisque les gens mangent des bananes, nous devenons radioactifs aussi. Vous êtes donc plus exposés aux radiations si vous dormez à côté de quelqu'un que si vous dormez seul. Mais je ne suis pas inquiet car cette dose est insignifiante par rapport à la radiation de fond émise par la Terre. Je veux dire : il y a un rayonnement ionisant venant du sol, de l'air et même de l'espace. Le niveau de radiation ici à Sydney est d'environ 0.15 microsieverts par heure et c'est environ la moyenne partout. Le niveau habituel, est entre 0.1 et 0.2 microsieverts/h Cependant, il y a des endroits avec des niveaux bien plus élevés. Alors, selon vous, qui sur Terre reçoit la dose maximale de radiation? Répondons à cette question en allant aux endroits les plus radioactifs sur Terre. Certains endroits que vous imagineriez très radioactifs pourraient vous étonner. Je suis à Hiroshima et ceci est le Dome de la Paix. A environ 600 m au dessus de ce dôme, explosa la première bombe nucléaire. Elle fut déclenchée pour avoir un impact de destruction maximal. Et bien le niveau de radiation aujourd'hui, presque 70 ans plus tard n'est que de 0.3 microsieverts/h. Je v ...
Straling is eng. Tenminste, sommige soorten straling zijn eng. Mijn Geiger teller meet bijvoorbeeld niets bij mijn mobiele telefoon, de wifi-router of bij de magnetron. Dat komt doordat een Geiger teller alleen ioniserende straling meet. Dat is straling me
t genoeg energie om elektronen uit atomen te schieten. Het wordt gemeten in de eenheid Sievert. Als je aan meer dan twee Sievert in 1 keer wordt bloodgesteld ga je waarschijnlijk kort daarna dood. Maar we worden altijd aan een kleine hoeveelheid ioniserende straling blootgesteld. Bananen zijn bijvoorbeeld rijk aan Kalium en een stukje van dat radioactief is. Dus als je een banaan eet wo
...[+++]rdt je blootgesteld aan ongeveer 0,1 microsievert. Dat is 1 tienmiljoenste Sievert. Laten we een banaan als maatstaaf gebruiken. Omdat mensen bananen eten worden we ook radioactief. Dus je wordt aan meer straling blootgesteld als je naast iemand slaapt. Maar daar zou ik me geen zorgen om maken omdat die dosis zo klein is vergeleken met de achtergrondstraling. Wat ik bedoel is dat er ioniserende straling uit de grond, uit stenen, de lucht en zelfs uit de ruimte komt. Hier in Sydney is de achtergrondstraling ongeveer 0,15 microsieverts per uur en dat is het gemiddelde op Aarde. Meestal zit de achtergrondstraling tussen de 0,1 en 0,2 microsieverts per uur. Maar er zijn plaatsen met aanzienlijk hogere niveaus. Maar wie zou op aarde de hoogste dosis straling ontvangen? We beantwoorden die vraag door naar de meeste radioactieve plekken op Aarde te gaan. Sommige plaatsen waarvan je zou verwachten dat er veel straling is, kunnen verrassend zijn. Ik ben in Hiroshima en dat is de 'Peace Dome'. Het was ongeveer 600 meter boven die koepel, waar 's werelds eerste nucleaire bom afging in een stad. Die plek werd gekozen zodat de explosie het meest destructief zou zijn. Het stralingsniveau tegenwoordig, bijna 70 jaar later, is slechts 0,3 microsievert per uur. Ik ga dadelijk een lift in. We gaan nu met een lift naar beneden. Dit is een oude uranium ...Car rappelez-vous: l'électricité et le magnétisme sont tout les deux des manifestations de la même force -- l’électromagnétisme -- donc nous pouvons pousser et tirer les électrons dans une direction en utilisant des champs magnétiques.
Herinner: Electriciteit en magnetisme zijn verschillende uitingen van dezelfde kracht Elektromagnetisme - we kunnen magnetische velden gebruiken om electronen te duwen of trekken.
En fait, si vous regardez l'ongle de votre pouce -- environ un centimètre carré -- il y a quelque chose comme 60 milliards de neutrinos par seconde venant du soleil, qui traversent chaque centimètre carré de votre corps. Mais vous ne les sentez pas parce que la force faible porte bien son nom. De très courte portée et très faible, donc ils ne font que vous traverser. Et ces particules ont été découvertes dans le courant du siècle dernier, grosso m
odo. La première, l'électron, a été découverte en 1897, et la dernière, cette chose appelée le neutrino tau, en l'an 2000. En fait juste -- J'allais dire, juste au coin de la rue à Chicago. Je s
...[+++]ais c'est un grand pays, l'Amérique, n'est-ce pas?
Als je naar de nagel van je duim kijkt -- ongeveer een vierkante centimeter: er gaan ongeveer 60 miljard neutrino's per seconde afkomstig van de zon door iedere vierkante centimeter van je lichaam. Maar je voelt ze niet, omdat de zwakke kernkracht de juiste naam heeft. Hij werkt over een erg korte afstand en is erg zwak, dus ze vliegen zo door je heen. Deze deeltjes zijn zo'n beetje allemaal in de afgelopen eeuw ontdekt. De eerste, het elektron, werd in 1897 ontdekt en de laatste, deze, het tau neutrino, in het jaar 2000. Ik wilde zeggen: hier om de hoek in Chicago. Ik weet dat Amerika een groot land is.
Ici, vous avez quelque chose et on trouve beaucoup de ce genre de choses en biologie : une substance produit un électron, l'électron essaye de faire le saut, et, seulement quand une molécule passe qui a la bonne vibration, on obtient une réaction.
Dit systeem zorgt ervoor -- en dat komt veel voor in de biologie -- dat een stof een elektron geeft en het elektron springt, maar alleen als het elektron de juiste vibratie heeft heeft de reactie plaats.
Le proton est manifestement constitué de tout un ensemble de petites particules. C'était plus ou moins connu. La façon d'analyser cela était, bien sûr, les diagrammes de Feynman. C'est ce à quoi servaient les diagrammes de Feynman : comprendre les particules. Les expériences que l'on faisait étaient très simples. Vous prenez simplement le proton, et vous le heurtez à très grande vitesse avec un électron. C'était ce à quoi servaient les diagrammes de Feynman.
Het proton bestaat duidelijk uit een heleboel kleine deeltjes. Dat was min of meer bekend. De manier om dat te analyseren was natuurlijk, Feynman-diagrammen. Daarvoor waren ze bedacht - om deeltjes te begrijpen. De aan de gang zijnde experimenten waren heel eenvoudig. Je neemt het proton en je knalt er een elektron tegen aan. Daarvoor dienden de Feynman-diagrammen.
Vous en avez probablement entendu parlé il y a longtemps en chimie lorsque vous avez deux atomes, suffisamment proches, et que les électrons se déplacent autours.
Lange tijd geleden heb je daar misschien in de chemieles over gehoord: als twee atomen dicht bij elkaar komen, gaan hun elektronen synchroon bewegen.
datacenter (12): www.wordscope.be (v4.0.br)
vous relâchez un électron ->
Date index: 2025-05-26